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Streaming Background
(last week self study)



TCP and UDP

Reliability Low Delay Congestion 
Control

Typical 
Application

TCP ◎
(ACK and lost 
packet 
retransmission)

☓ → ◯
(thanks to CDN
& broadband 
network)

◯ → ◎
(TCP versions)

One way
(on-demand) 
streaming

UDP ☓
(no ACK nor 
sequence 
number)

◎
(no ACK nor 
packet 
retransmission)

☓ → △
(RTP/RTCP and 
TFRC)

Interactive 
(bi-directional) 
phone & 
conference



prefetching & CBR

Live On-Demand

startup (∼10s)
startup (∼1s)

sequence
number

time prefetching

CBR (constant bit rate)

one-way streaming in 10 to 20 years ago

CBR (constant bit rate)

(prefetch, then CBR)



ON/OFF cycles

• receiver buffer behaviors

(a) long ON-OFF Cycle
(sawtooth)

(b) short ON-OFF Cycle
(zippy pacing)

Idle
(OFF)

Idle
(OFF)

A. Rao, et al. ACM CoNEXT 2011

(prefetch & idle cycles)

one-way streaming nowadays

buffer 
occupancy



ON/OFF cycles
one-way streaming nowadays

• sequence number behaviors
sequence
number

example 1 (YouTube) example 2 (TVer)

ON

OFF

ON

OFF



TCP Variants



TCP-Reno (loss-based)
cwnd

n

0

BDP

a=1

b=0.5

losslossloss

buffer

increase:  cwnd = cwnd + 1/cwnd
decrease: cwnd = cwnd / 2

AIMD: additive increase multiplicative decrease



TCP-Vegas (delay-based)
cwnd

n
0

BDP

buffer
α

stored packets in a buffer









>−

<+
=

β

α

diffcwnd
otherwisecwnd
diffcwnd

cwnd
1

1

75.0*cwndcwnd =

min
min

RTT
RTT
cwnd

RTT
cwnddiff ⋅








−=

increase:

decrease:
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e.g. α=1, β=3



TCP problems, 20 years ago

• broadband wired networks
– slow window increase (inefficiency)

• deployment of wireless networks
– cannot distinguish wireless errors and 

buffer overflow

• TCP-Reno (NewReno, SACK) problem
– Reno expels Vegas (unfriendliness) 



TCP Variants in the 21th century
• Loss-based (AIMD)

– TCP-Reno / NewReno / SACK
– High-Speed TCP (IETF RFC 3649, Dec 2003)
– Scalable TCP (PFLDnet 2003)
– BIC-TCP / CUBIC-TCP (IEEE INFOCOM 2004, PFLDnet 2005) 

... Linux default
– H-TCP (PFLDnet 2004)
– TCP-Westwood (ACM MOBICOM 2001)

• Delay-based (RTT Observation)
– TCP-Vegas (IEEE JSAC, Oct 1995)
– FAST-TCP (INFOCOM 2004)

• Hybrid (of loss and delay modes)
– Gentle High-Speed TCP (PfHSN 2003)
– TCP-Africa (IEEE INFOCOM 2005)
– Compound TCP (PFLDnet 2006) ... Windows (proposed by MSR)
– Adaptive Reno (PFLDnet 2006)
– YeAH-TCP (PFLDnet 2007)
– TCP-Fusion (PFLDnet 2007) … our lab

+ TCP-BBR (2017 by Google)



Loss-based TCPs
a b

Variants Increase / Update Decrease 
TCP-Reno 1 0.5 

HighSpeed TCP (HS-TCP) 
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e.g. 0.1 (10Gbps, 100ms) 
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Delay-based TCPs

Variants Update Decrease 
TCP-Vegas 
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Hybrid TCP

cwnd

n
0

BDP

losslossloss

buffer

• RTT increase: loss mode ⇒ improvement of friendliness
• no RTT increase: delay mode ⇒ improvement of efficiency



Hybrid TCPs

Variants Increase Decrease 
Gentle HS-TCP HS-TCP / Reno HS-TCP 

TCP-Africa HS-TCP / Reno HS-TCP 

Compound TCP (CTCP) 75.0125.0 cwnd⋅  / Reno 0.5 

Adaptive Reno (ARENO) Mbps10/B  / Reno 



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YeAH-TCP STCP / Reno 
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a b

simple

adaptive



CUBIC-TCP
(Linux default)



BIC-TCP (1)

• Binary Increase Congestion Control

パケットロスが
発生したcwnd

L.Xu et al: “Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks,” IEEE INFOCOM 2004.

平衡点



BIC-TCP (2)

if (cwnd < Wmax )
Winc = (Wmax – cwnd) / 2;

else 
Winc = (cwnd - Wmax) / 2;

if (Winc > Smax)
Winc = Smax;

elseif (Winc < Smin)
Winc = Smin;

cwnd = cwnd + Winc / cwnd;

binary search

additive increase
(linear increase)

L.Xu et al: “Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks,” IEEE INFOCOM 2004.

Wmax: cwnd when a last loss happened

Smax: maximum increase rate (e.g. 32)

Smin: minimum increase rate (e.g. 0.01)

• Window Increase

“concave”

“convex”



• Window Decrease

BIC-TCP (3)

if (cwnd < Wmax )
Wmax,new = cwnd * (2-β) / 2;

else 
Wmax,new = cwnd;

cwnd = cwnd * (1- β);

L.Xu et al: “Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks,” IEEE INFOCOM 2004.

loss 2

Wmax,new=0.9*cwnd

Wmax,new=cwnd

*0.9: give bandwidth to newly-coming flows
... “Fast Convergence”

β: decrease rate (e.g. 0.2)

loss 1

Wmax=target cwnd update



CUBIC-TCP (1)

• Cubic approximation of BIC-TCP

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008.



K

W(t)

Wmax*(1-β)

CUBIC-TCP (2)

• Window Increase

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008.

/* cubic function */
Winc = W(t+RTT) – cwnd;

cwnd = cwnd + Winc / cwnd;

/* TCP mode */
if ( Wtcp > cwnd )

cwnd = Wtcp;

3 max

max
3)(*)(

C
WK

WKtCtW

β
=

+−=

RTT
tWtWtcp β

ββ
−

+−=
2

3)1()( max

equivalent to Reno ※ window decrease is the same 
as BIC

β: decrease rate (e.g. 0.2)

C: constant (e.g. 0.4)



CUBIC-TCP (3)

• CUBIC’s cwnd behavior

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008.



CUBIC-TCP (4)
• Advantages

– stability
– “intra-protocol fairness” among multiple 

CUBIC flows

• Disadvantages 
– heavy buffer occupancy and delay increase

(⇔ delay-based)
– “inter-protocol unfairness” against other 

TCP flows
• “Linux beats Windows!” (vs. Compound TCP)

K.Munir et al: “Linux beats Windows! or the Worrying Evolution of TCP...”, PFLDNet 2007.



Hybrid TCPs



Hybrid TCP (1)

• single flow

2/lastcwnd

RTT
RTTcwndlast

min

lastcwnd

packet loss

n
BDP

adaptive switching of two modes (loss & delay):
① constant rate until RTT increases (delay mode) : “efficiency” and 
“low delay”
② performs as Reno when RTT increases (loss mode) : “friendliness”

clearing buffer
(TCPW) ①

②
Hybrid

legacy (Reno)

vacant capacity



Hybrid TCP (2)

• two flows

2/lastcwnd

RTT
RTTcwndlast

min

lastcwnd

packet loss

n
BDP/2

adaptive switching of two modes (loss & delay):
① fast cwnd increase (delay ... “efficiency”)
② mild cwnd  decrease (delay ... congestion avoidance)
③ performs as Reno when RTT increases (loss ... “friendliness”) 

clearing buffer
(TCPW) ①

② ③

Hybrid

legacy (Reno)

vacant capacity



Min-Max Fair (ideal case)
• Min-Max-Fair: allocate “maximum bandwidth” to a user who has 

“minimum bandwidth”

1

2

4

3

5
① allocate (fair) 1/3 

to each flow

② allocate remaining 
2/3 to a flow

③ allocate (remaining) 1 
to a flow

D.Bertsekas and R.Gallager: “Data Networks,” Prentice Hall.



TCP’s objective

時間

bandwidth

session start another session

時間

bandwidth

another session

Ideal：

TCP Reno

Min-Max Fair

searching for Min-Max Fair 
session start



TCP behavior model (1)
• model definition

– Loss-mode (TCP-Reno) :
• cwnd += 1 (per “RTT round”)
• cwnd *= 1/2 (when a packet loss is detected)

– Delay-mode :
• fill a “pipe” (fully utilize a link) without causing RTT

increase
– Hybrid :

• works in delay mode when RTT is not increased
• works in loss mode when RTT is increases (i.e. when

packets are buffered)
• mode selection: cwnd = max( cwndloss, cwnddelay )



TCP behavior model (2)
• parameter definition

– w : cwnd when a packet loss is detected
– W : cwnd which just fills a pipe ～ BDP
– p : packet loss rate

• assumption
– packet loss due to buffer overflow is equivalent

to packet loss due to random error

23
8
w

p = (in case of TCP-Reno)



TCP behavior model (3)
• TCP friendly model

cwnd
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w

w/2
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w/2 RTT round
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p: packet loss rate
RTT: round trip time

R: TCP equivalent rate

R
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# of transmitted packets until a packet loss is detected

= area of a trapezoid



TCP behavior model (4)

• single flow

bottleneck linksender receiver

single TCP flow



TCP behavior model (5)

 cwnd

n0

W

w

w/2

w/2

BDP

buffer
loss & hybrid

delay

RTT

RTTmin

0 w/2
n

delay

loss & hybrid

cwnd

n0

W

w

w/2

w/2

BDP

buffer
loss & hybrid

delay

RTT

RTTmin

0 w/2
n

delay

loss & hybrid

cwnd

n
w/20

W

w

w/2

W-w/2

loss

BDP

buffer

delay

RTT

RTTmin

w/20 n
W-w/2

delay

loss & hybrid

hybrid

cwnd

n
w/20

W

w

w/2

W-w/2

loss

BDP

buffer

delay

RTT

RTTmin

w/20 n
W-w/2

delay

loss & hybrid

hybrid

RTT

RTTmin

w/20 n

loss, delay & hybrid

cwnd

n
w/20

W

w

w/2

BDPloss

bufferdelay & hybrid

RTT

RTTmin

w/20 n

loss, delay & hybrid

cwnd

n
w/20

W

w

w/2

BDPloss

bufferdelay & hybrid

(i) W < w/2 (ii) w/2<W <w (iii) w <W 

large buffer, small PLR
(always loss-mode)

large PLR, always vacant
(always delay-mode)

small buffer, medium PLR
(delay ↔ loss)

vacant capacity

vacant capacity

w ～PLR、W～bandwidth

loss-driven
delay-driven
hybrid

• cwnd & RTT behaviors of ideal models (single flow case)



TCP behavior model (6)

• formulation
TCP CA round (i) W < w/2 (ii) w/2 ≤  W < w  (iii) w ≤  W 
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PS: Packet size, B: Link bandwidth



TCP behavior model (7)

• abstraction of actual hybrids
Hybrids Window increase Window decrease

Compound TCP 0.125*cwnd0.75 1/2

ARENO B/10Mbps 1/2～1

YeAH-TCP Scalable TCP (1.01) 1/2, RTTmin/RTT, 7/8

TCP-Fusion B*Dmin/(N*PS) RTTmin/RTT

Dmin: timer resolution, N: # of flows



TCP behavior model (8)
• evaluation by models and simulations

1Gbps 1Gbps

100Mbps
RTT=40ms

when PLR is large (w/2<W),
throughputs of delay &
hybrid are much larger than
that of loss-mode (i.e.
efficiency)

buffer size = BDP (constant)
Packet loss rate : variable
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CTCP (sim)
ARENO (sim)
YeAH (sim)
Fusion (sim)
Loss (model)
Delay (model)
Hybrid/Fusion (model)
CTCP (model)
ARENO (model)
YeAH (model)

Case 1 Case 2 Case 3

degradation of Compound &
YeAH is due to fixed window
decrease

loss-driven

delay &
hybrid

throughput

loss rate



TCP behavior model (9)

• two flows (competing)

bottleneck link

senders receivers

loss-based TCP flow

loss-based or hybrid TCP flow



TCP behavior model (10)

large buffer, small PLR large PLR, always vacantsmall buffer, medium PLR

w ～PLR、W～bandwidth
  cwnd

n0

W

w/2

BDP

buffer

loss & hybrid

total

w

w/2

cwnd

n0

W

w/2

BDP

buffer

loss & hybrid

total

w

w/2

n0

W
w

w/2

w/2(W-w)/2

BDPW/2

loss

cwnd

buffer

hybrid

total

n0

W
w

w/2

w/2(W-w)/2

BDPW/2

loss

cwnd

buffer

hybrid

total
cwnd

n0

W

w
w/2

w/2

BDP

buffer

W/2

total

loss

hybrid

cwnd

n0

W

w
w/2

w/2

BDP

buffer

W/2

total

loss

hybrid

always buffered
(loss mode)

always vacant
(delay mode)

vacant → buffered
(delay → loss)

(i) W < w (low PLR) (ii) w <W < 2*w (medium PLR) (iii) 2*w <W (high PLR)

• cwnd behavior of ideal 
models (two flow case)

loss-driven

hybrid

total (loss + hybrid)



TCP behavior model (11)

• formulation

PS: Packet size, B: Link bandwidth

TCP CA round (i) W < w (ii) w  ≤  W  < 2w (iii) 2w  ≤  W 

Loss transmitted  

packets 
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TCP behavior model (12)
• evaluation by models and simulations

when PLR is large (w<W),
throughputs of delay &
hybrid are much larger than
that of loss-mode
(efficiency)

buffer size = BDP (constant)
Packet loss rate : variable

when PLR is low (w>W),
hybrid behaves similar to
loss-mode (friendliness)
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ARENO (sim)
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Fusion (sim)

Loss (model)
Hybrid (model)

CTCP (,model)

ARENO (model)

YeAH (model)
Fusion (model)

Case 1 Case 2 Case 3

loss-driven

delay &
hybrid

1Gbps 1Gbps

100Mbps
RTT=40ms

throughput

loss rate



TCP behavior model (13)
• Advantages of Hybrid TCP

– when vacant capacity exists (or PLR is large), 
throughput efficiency is greatly improved 
(advantage of delay-mode)

– when no vacant capacity exists (or buffer size 
is large), friendliness to legacy TCP (i.e. Reno) is 
achieved (advantage of loss-mode)

• Disadvantages of Hybrid TCP
– when buffer size is large, delay-mode is never 

activated …



Summary of Hybrid TCP
• “Efficiency”, “Friendliness” and “Low delay”

– can be applied to real-time streaming and large 
file download

– might be effective in wireless networks
– friendliness to CUBIC-TCP or Compound-TCP

• CUBIC-TCP: Linux default
• Compound-TCP: Windows

– other metrics
• RTT fairness, mice/elephant (short-lived or long-

lived), convergence speed, etc…

– efficiency is brought by delay-mode



Summary



Summary of TCP versions
• CUBIC-TCP provides “efficiency”, but 

tends to increase latency because router 
buffers are filled up

• Compound-TCP provides “low delay” thanks 
to its delay mode, but suffers from 
unfriendliness against CUBIC-TCP

• Some community discusses redesign of TCP  
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