
TCP Variants

情報理工・情報通信専攻 甲藤二郎

E-Mail: katto@waseda.jp

画像情報特論 (3)
Advanced Image Information (3)

Streaming Background
(last week self study)

TCP and UDP

Reliability Low Delay Congestion
Control

Typical
Application

TCP ◎
(ACK and lost
packet
retransmission)

☓ → ◯
(thanks to CDN
& broadband
network)

◯ → ◎
(TCP versions)

One way
(on-demand)
streaming

UDP ☓
(no ACK nor
sequence
number)

◎
(no ACK nor
packet
retransmission)

☓ → △
(RTP/RTCP and
TFRC)

Interactive
(bi-directional)
phone &
conference

prefetching & CBR

Live On-Demand

startup (∼10s)
startup (∼1s)

sequence
number

time prefetching

CBR (constant bit rate)

one-way streaming in 10 to 20 years ago

CBR (constant bit rate)

(prefetch, then CBR)

ON/OFF cycles

• receiver buffer behaviors

(a) long ON-OFF Cycle
(sawtooth)

(b) short ON-OFF Cycle
(zippy pacing)

Idle
(OFF)

Idle
(OFF)

A. Rao, et al. ACM CoNEXT 2011

(prefetch & idle cycles)

one-way streaming nowadays

buffer
occupancy

ON/OFF cycles
one-way streaming nowadays

• sequence number behaviors
sequence
number

example 1 (YouTube) example 2 (TVer)

ON

OFF

ON

OFF

TCP Variants

TCP-Reno (loss-based)
cwnd

n

0

BDP

a=1

b=0.5

losslossloss

buffer

increase: cwnd = cwnd + 1/cwnd
decrease: cwnd = cwnd / 2

AIMD: additive increase multiplicative decrease

TCP-Vegas (delay-based)
cwnd

n
0

BDP

buffer
α

stored packets in a buffer









>−

<+
=

β

α

diffcwnd
otherwisecwnd
diffcwnd

cwnd
1

1

75.0*cwndcwnd =

min
min

RTT
RTT
cwnd

RTT
cwnddiff ⋅








−=

increase:

decrease:

stored packets in a buffer

e.g. α=1, β=3

TCP problems, 20 years ago

• broadband wired networks
– slow window increase (inefficiency)

• deployment of wireless networks
– cannot distinguish wireless errors and

buffer overflow

• TCP-Reno (NewReno, SACK) problem
– Reno expels Vegas (unfriendliness)

TCP Variants in the 21th century
• Loss-based (AIMD)

– TCP-Reno / NewReno / SACK
– High-Speed TCP (IETF RFC 3649, Dec 2003)
– Scalable TCP (PFLDnet 2003)
– BIC-TCP / CUBIC-TCP (IEEE INFOCOM 2004, PFLDnet 2005)

... Linux default
– H-TCP (PFLDnet 2004)
– TCP-Westwood (ACM MOBICOM 2001)

• Delay-based (RTT Observation)
– TCP-Vegas (IEEE JSAC, Oct 1995)
– FAST-TCP (INFOCOM 2004)

• Hybrid (of loss and delay modes)
– Gentle High-Speed TCP (PfHSN 2003)
– TCP-Africa (IEEE INFOCOM 2005)
– Compound TCP (PFLDnet 2006) ... Windows (proposed by MSR)
– Adaptive Reno (PFLDnet 2006)
– YeAH-TCP (PFLDnet 2007)
– TCP-Fusion (PFLDnet 2007) … our lab

+ TCP-BBR (2017 by Google)

Loss-based TCPs
a b

Variants Increase / Update Decrease
TCP-Reno 1 0.5

HighSpeed TCP (HS-TCP)
)(2

)()(2)(
2

wb
wpwbwwa

−
⋅⋅

=

e.g. 70 (10Gbps, 100ms)

5.0)5.0(
)log()log(

)log()log()(+−
−

−
= high

lowhigh

low b
WW

Wwwb

e.g. 0.1 (10Gbps, 100ms)

Scalable TCP (STCP) 0.01 (per every ACK) 0.875

BIC-TCP









)(
)(

)(

fastprobingmax
slowsearchbinary

fastincreaseadditive

0.875

CUBIC-TCP
max

33
max)2(4.0 WWtw +−=

0.8

H-TCP () (){ }THt −⋅+−← 5.10112 βα









>

−+

←
otherwise

RTT
RTT

kB
kBkBfor

max

min

2
)(

)()1(5.0
β

TCP-Westwood (TCPW) 1




)(/*
)(/*

min

min

congestedPSRTTBE
congestednotPSRTTRE

aggressive

adaptive

Delay-based TCPs

Variants Update Decrease
TCP-Vegas









−

+
←

)(1
)(

)(1

congestionearlyw
stablew

congestionnow
w

0.75

FAST-TCP















 ++−← αγγ w
RTT

RTTwww min)1(,2min 0.5 (?)

a b

Hybrid TCP

cwnd

n
0

BDP

losslossloss

buffer

• RTT increase: loss mode ⇒ improvement of friendliness
• no RTT increase: delay mode ⇒ improvement of efficiency

Hybrid TCPs

Variants Increase Decrease
Gentle HS-TCP HS-TCP / Reno HS-TCP

TCP-Africa HS-TCP / Reno HS-TCP

Compound TCP (CTCP) 75.0125.0 cwnd⋅ / Reno 0.5

Adaptive Reno (ARENO) Mbps10/B / Reno





)(5.0
)(1

losscongestion
losscongestionnon

YeAH-TCP STCP / Reno






 5.0,max min 　

RTT
RTT

TCP-Fusion
PS
DB min* / Reno 






 5.0,max min 　

RTT
RTT

a b

simple

adaptive

CUBIC-TCP
(Linux default)

BIC-TCP (1)

• Binary Increase Congestion Control

パケットロスが
発生したcwnd

L.Xu et al: “Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks,” IEEE INFOCOM 2004.

平衡点

BIC-TCP (2)

if (cwnd < Wmax)
Winc = (Wmax – cwnd) / 2;

else
Winc = (cwnd - Wmax) / 2;

if (Winc > Smax)
Winc = Smax;

elseif (Winc < Smin)
Winc = Smin;

cwnd = cwnd + Winc / cwnd;

binary search

additive increase
(linear increase)

L.Xu et al: “Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks,” IEEE INFOCOM 2004.

Wmax: cwnd when a last loss happened

Smax: maximum increase rate (e.g. 32)

Smin: minimum increase rate (e.g. 0.01)

• Window Increase

“concave”

“convex”

• Window Decrease

BIC-TCP (3)

if (cwnd < Wmax)
Wmax,new = cwnd * (2-β) / 2;

else
Wmax,new = cwnd;

cwnd = cwnd * (1- β);

L.Xu et al: “Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks,” IEEE INFOCOM 2004.

loss 2

Wmax,new=0.9*cwnd

Wmax,new=cwnd

*0.9: give bandwidth to newly-coming flows
... “Fast Convergence”

β: decrease rate (e.g. 0.2)

loss 1

Wmax=target cwnd update

CUBIC-TCP (1)

• Cubic approximation of BIC-TCP

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008.

K

W(t)

Wmax*(1-β)

CUBIC-TCP (2)

• Window Increase

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008.

/* cubic function */
Winc = W(t+RTT) – cwnd;

cwnd = cwnd + Winc / cwnd;

/* TCP mode */
if (Wtcp > cwnd)

cwnd = Wtcp;

3 max

max
3)(*)(

C
WK

WKtCtW

β
=

+−=

RTT
tWtWtcp β

ββ
−

+−=
2

3)1()(max

equivalent to Reno ※ window decrease is the same
as BIC

β: decrease rate (e.g. 0.2)

C: constant (e.g. 0.4)

CUBIC-TCP (3)

• CUBIC’s cwnd behavior

S.Ha et al: “CUBIC: A New TCP Friendly HighSpeed TCP Variant”, ACM SIGOPS Review, 2008.

CUBIC-TCP (4)
• Advantages

– stability
– “intra-protocol fairness” among multiple

CUBIC flows

• Disadvantages
– heavy buffer occupancy and delay increase

(⇔ delay-based)
– “inter-protocol unfairness” against other

TCP flows
• “Linux beats Windows!” (vs. Compound TCP)

K.Munir et al: “Linux beats Windows! or the Worrying Evolution of TCP...”, PFLDNet 2007.

Hybrid TCPs

Hybrid TCP (1)

• single flow

2/lastcwnd

RTT
RTTcwndlast

min

lastcwnd

packet loss

n
BDP

adaptive switching of two modes (loss & delay):
① constant rate until RTT increases (delay mode) : “efficiency” and
“low delay”
② performs as Reno when RTT increases (loss mode) : “friendliness”

clearing buffer
(TCPW) ①

②
Hybrid

legacy (Reno)

vacant capacity

Hybrid TCP (2)

• two flows

2/lastcwnd

RTT
RTTcwndlast

min

lastcwnd

packet loss

n
BDP/2

adaptive switching of two modes (loss & delay):
① fast cwnd increase (delay ... “efficiency”)
② mild cwnd decrease (delay ... congestion avoidance)
③ performs as Reno when RTT increases (loss ... “friendliness”)

clearing buffer
(TCPW) ①

② ③

Hybrid

legacy (Reno)

vacant capacity

Min-Max Fair (ideal case)
• Min-Max-Fair: allocate “maximum bandwidth” to a user who has

“minimum bandwidth”

1

2

4

3

5
① allocate (fair) 1/3

to each flow

② allocate remaining
2/3 to a flow

③ allocate (remaining) 1
to a flow

D.Bertsekas and R.Gallager: “Data Networks,” Prentice Hall.

TCP’s objective

時間

bandwidth

session start another session

時間

bandwidth

another session

Ideal：

TCP Reno

Min-Max Fair

searching for Min-Max Fair
session start

TCP behavior model (1)
• model definition

– Loss-mode (TCP-Reno) :
• cwnd += 1 (per “RTT round”)
• cwnd *= 1/2 (when a packet loss is detected)

– Delay-mode :
• fill a “pipe” (fully utilize a link) without causing RTT

increase
– Hybrid :

• works in delay mode when RTT is not increased
• works in loss mode when RTT is increases (i.e. when

packets are buffered)
• mode selection: cwnd = max(cwndloss, cwnddelay)

TCP behavior model (2)
• parameter definition

– w : cwnd when a packet loss is detected
– W : cwnd which just fills a pipe ～ BDP
– p : packet loss rate

• assumption
– packet loss due to buffer overflow is equivalent

to packet loss due to random error

23
8
w

p = (in case of TCP-Reno)

TCP behavior model (3)
• TCP friendly model

cwnd

n

w

w/2

0
w/2 RTT round










⋅=

=

pRTT
PSR

w
p

2
3

3
8

2

w: cwnd when a packet loss is detected
p: packet loss rate
RTT: round trip time

R: TCP equivalent rate

R

TCP-Reno

8
3

222
1 2wwww

=⋅





 +⋅

of transmitted packets until a packet loss is detected

= area of a trapezoid

TCP behavior model (4)

• single flow

bottleneck linksender receiver

single TCP flow

TCP behavior model (5)

 cwnd

n0

W

w

w/2

w/2

BDP

buffer
loss & hybrid

delay

RTT

RTTmin

0 w/2
n

delay

loss & hybrid

cwnd

n0

W

w

w/2

w/2

BDP

buffer
loss & hybrid

delay

RTT

RTTmin

0 w/2
n

delay

loss & hybrid

cwnd

n
w/20

W

w

w/2

W-w/2

loss

BDP

buffer

delay

RTT

RTTmin

w/20 n
W-w/2

delay

loss & hybrid

hybrid

cwnd

n
w/20

W

w

w/2

W-w/2

loss

BDP

buffer

delay

RTT

RTTmin

w/20 n
W-w/2

delay

loss & hybrid

hybrid

RTT

RTTmin

w/20 n

loss, delay & hybrid

cwnd

n
w/20

W

w

w/2

BDPloss

bufferdelay & hybrid

RTT

RTTmin

w/20 n

loss, delay & hybrid

cwnd

n
w/20

W

w

w/2

BDPloss

bufferdelay & hybrid

(i) W < w/2 (ii) w/2<W <w (iii) w <W

large buffer, small PLR
(always loss-mode)

large PLR, always vacant
(always delay-mode)

small buffer, medium PLR
(delay ↔ loss)

vacant capacity

vacant capacity

w ～PLR、W～bandwidth

loss-driven
delay-driven
hybrid

• cwnd & RTT behaviors of ideal models (single flow case)

TCP behavior model (6)

• formulation
TCP CA round (i) W < w/2 (ii) w/2 ≤ W < w (iii) w ≤ W

transmitted

packets
2

8
3 w 2

8
3 w 2

8
3 w Loss

elapsed time
B

PSwWwRTTw ⋅−+⋅)43(
8
1

2
1 2

min

B
PSWwRTTw ⋅−+⋅ 2

min)(
2
1

2
1

min2
1 RTTw ⋅

transmitted

packets
Ww ⋅

2
1 Ww ⋅

2
1 Ww ⋅

2
1 Delay

elapsed time
min2

1 RTTw ⋅
min2

1 RTTw ⋅
min2

1 RTTw ⋅

transmitted

packets
2

8
3 w 2)(

2
1

2
1 WwWw −+⋅ Ww ⋅

2
1 Hybrid

elapsed time
B

PSwWwRTTw ⋅−+⋅)43(
8
1

2
1 2

min

B
PSWwRTTw ⋅−+⋅ 2

min)(
2
1

2
1

min2
1 RTTw ⋅

PS: Packet size, B: Link bandwidth

TCP behavior model (7)

• abstraction of actual hybrids
Hybrids Window increase Window decrease

Compound TCP 0.125*cwnd0.75 1/2

ARENO B/10Mbps 1/2～1

YeAH-TCP Scalable TCP (1.01) 1/2, RTTmin/RTT, 7/8

TCP-Fusion B*Dmin/(N*PS) RTTmin/RTT

Dmin: timer resolution, N: # of flows

TCP behavior model (8)
• evaluation by models and simulations

1Gbps 1Gbps

100Mbps
RTT=40ms

when PLR is large (w/2<W),
throughputs of delay &
hybrid are much larger than
that of loss-mode (i.e.
efficiency)

buffer size = BDP (constant)
Packet loss rate : variable

0

20

40

60

80

100

120

-6 -5 -4 -3 -2 -1
Packet Loss Rate (10^n)

T
h
ro

u
gh

p
u
t

(M
b
p
s)

Reno (sim)
FAST (sim)
CTCP (sim)
ARENO (sim)
YeAH (sim)
Fusion (sim)
Loss (model)
Delay (model)
Hybrid/Fusion (model)
CTCP (model)
ARENO (model)
YeAH (model)

Case 1 Case 2 Case 3

degradation of Compound &
YeAH is due to fixed window
decrease

loss-driven

delay &
hybrid

throughput

loss rate

TCP behavior model (9)

• two flows (competing)

bottleneck link

senders receivers

loss-based TCP flow

loss-based or hybrid TCP flow

TCP behavior model (10)

large buffer, small PLR large PLR, always vacantsmall buffer, medium PLR

w ～PLR、W～bandwidth
 cwnd

n0

W

w/2

BDP

buffer

loss & hybrid

total

w

w/2

cwnd

n0

W

w/2

BDP

buffer

loss & hybrid

total

w

w/2

n0

W
w

w/2

w/2(W-w)/2

BDPW/2

loss

cwnd

buffer

hybrid

total

n0

W
w

w/2

w/2(W-w)/2

BDPW/2

loss

cwnd

buffer

hybrid

total
cwnd

n0

W

w
w/2

w/2

BDP

buffer

W/2

total

loss

hybrid

cwnd

n0

W

w
w/2

w/2

BDP

buffer

W/2

total

loss

hybrid

always buffered
(loss mode)

always vacant
(delay mode)

vacant → buffered
(delay → loss)

(i) W < w (low PLR) (ii) w <W < 2*w (medium PLR) (iii) 2*w <W (high PLR)

• cwnd behavior of ideal
models (two flow case)

loss-driven

hybrid

total (loss + hybrid)

TCP behavior model (11)

• formulation

PS: Packet size, B: Link bandwidth

TCP CA round (i) W < w (ii) w ≤ W < 2w (iii) 2w ≤ W

Loss transmitted

packets
2

8
3 w 2

8
3 w 2

8
3 w

Hybrid transmitted

packets
2

8
3 w 22)(

4
1

8
3 wWw −+ 2

8
3

2
1 wWw −⋅

(common) elapsed time
B

PSWwwRTTw ⋅−+⋅)23(
4
1

2
1

min

B
PSWwRTTw ⋅−+⋅ 2

min)2(
4
1

2
1

min2
1 RTTw ⋅

TCP behavior model (12)
• evaluation by models and simulations

when PLR is large (w<W),
throughputs of delay &
hybrid are much larger than
that of loss-mode
(efficiency)

buffer size = BDP (constant)
Packet loss rate : variable

when PLR is low (w>W),
hybrid behaves similar to
loss-mode (friendliness)

0

20

40

60

80

100

-6 -5 -4 -3 -2 -1

Packet Loss Rate (10^n)

T
h
ro

u
gh

p
u
t

(M
b
p
s)

Reno (sim)

FAST (sim)

CTCP (sim)
ARENO (sim)

YeAH (sim)

Fusion (sim)

Loss (model)
Hybrid (model)

CTCP (,model)

ARENO (model)

YeAH (model)
Fusion (model)

Case 1 Case 2 Case 3

loss-driven

delay &
hybrid

1Gbps 1Gbps

100Mbps
RTT=40ms

throughput

loss rate

TCP behavior model (13)
• Advantages of Hybrid TCP

– when vacant capacity exists (or PLR is large),
throughput efficiency is greatly improved
(advantage of delay-mode)

– when no vacant capacity exists (or buffer size
is large), friendliness to legacy TCP (i.e. Reno) is
achieved (advantage of loss-mode)

• Disadvantages of Hybrid TCP
– when buffer size is large, delay-mode is never

activated …

Summary of Hybrid TCP
• “Efficiency”, “Friendliness” and “Low delay”

– can be applied to real-time streaming and large
file download

– might be effective in wireless networks
– friendliness to CUBIC-TCP or Compound-TCP

• CUBIC-TCP: Linux default
• Compound-TCP: Windows

– other metrics
• RTT fairness, mice/elephant (short-lived or long-

lived), convergence speed, etc…

– efficiency is brought by delay-mode

Summary

Summary of TCP versions
• CUBIC-TCP provides “efficiency”, but

tends to increase latency because router
buffers are filled up

• Compound-TCP provides “low delay” thanks
to its delay mode, but suffers from
unfriendliness against CUBIC-TCP

• Some community discusses redesign of TCP

	画像情報特論 (3)�Advanced Image Information (3)
	スライド番号 2
	TCP and UDP
	prefetching & CBR
	ON/OFF cycles
	ON/OFF cycles
	スライド番号 7
	TCP-Reno (loss-based)
	TCP-Vegas (delay-based)
	TCP problems, 20 years ago
	TCP Variants in the 21th century
	Loss-based TCPs
	Delay-based TCPs
	Hybrid TCP
	Hybrid TCPs
	スライド番号 16
	BIC-TCP (1)
	BIC-TCP (2)
	BIC-TCP (3)
	CUBIC-TCP (1)
	CUBIC-TCP (2)
	CUBIC-TCP (3)
	CUBIC-TCP (4)
	スライド番号 24
	Hybrid TCP (1)
	Hybrid TCP (2)
	Min-Max Fair (ideal case)
	TCP’s objective
	TCP behavior model (1)
	TCP behavior model (2)
	TCP behavior model (3)
	TCP behavior model (4)
	TCP behavior model (5)
	TCP behavior model (6)
	TCP behavior model (7)
	TCP behavior model (8)
	TCP behavior model (9)
	TCP behavior model (10)
	TCP behavior model (11)
	TCP behavior model (12)
	TCP behavior model (13)
	Summary of Hybrid TCP
	スライド番号 43
	Summary of TCP versions

