画像情報特論 (3) Advanced Image Information (3)

TCP Variants

情報理工・情報通信専攻 甲藤二郎 E-Mail: katto@waseda.jp

Streaming Background (last week self study)

TCP and UDP

	Reliability	Low Delay	Congestion Control	Typical Application
ТСР	© (ACK and lost packet retransmission)	$\times \rightarrow \bigcirc$ (thanks to CDN & broadband network)	$\bigcirc \rightarrow \bigcirc$ (TCP versions)	One way (on-demand) streaming
UDP	× (no ACK nor sequence number)	© (no ACK nor packet retransmission)	$\times \to \Delta$ (RTP/RTCP and TFRC)	Interactive (bi-directional) phone & conference

one-way streaming in 10 to 20 years ago

prefetching & CBR

(prefetch, then CBR)

sequence number

one-way streaming nowadays

ON/OFF cycles

receiver buffer behaviors

A. Rao, et al. ACM CoNEXT 2011

⁽prefetch & idle cycles)

one-way streaming nowadays

example 2 (TVer)

sequence number behaviors

sequence number

example 1 (YouTube)

TCP Variants

TCP-Reno (loss-based)

decrease: cwnd = cwnd + 1/cwr decrease: cwnd = cwnd / 2

AIMD: additive increase multiplicative decrease

TCP-Vegas (delay-based)

TCP problems, 20 years ago

- broadband wired networks
 slow window increase (<u>inefficiency</u>)
- deployment of wireless networks
 - cannot distinguish wireless errors and buffer overflow
- TCP-Reno (NewReno, SACK) problem
 Reno expels Vegas (<u>unfriendliness</u>)

TCP Variants in the 21th century

- Loss-based (AIMD)
 - TCP-Reno / NewReno / SACK
 - High-Speed TCP (IETF RFC 3649, Dec 2003)
 - Scalable TCP (PFLDnet 2003)
 - BIC-TCP / CUBIC-TCP (IEEE INFOCOM 2004, PFLDnet 2005) ... Linux default
 - H-TCP (PFLDnet 2004)
 - TCP-Westwood (ACM MOBICOM 2001)
- Delay-based (RTT Observation)
 - TCP-Vegas (IEEE JSAC, Oct 1995)
 - FAST-TCP (INFOCOM 2004)
- Hybrid (of loss and delay modes)
 - Gentle High-Speed TCP (PfHSN 2003)
 - TCP-Africa (IEEE INFOCOM 2005)
 - Compound TCP (PFLDnet 2006) ... Windows (proposed by MSR)
 - Adaptive Reno (PFLDnet 2006)
 - YeAH-TCP (PFLDnet 2007)
 - TCP-Fusion (PFLDnet 2007) ... our lab

+ TCP-BBR (2017 by Google)

Loss-based TCPs

		a	b
	Variants	Increase / Update	Decrease
_	TCP-Reno	1	0.5
	HighSpeed TCP (HS-TCP)	$a(w) = \frac{2w^2 \cdot b(w) \cdot p(w)}{2 - b(w)}$	$b(w) = \frac{\log(w) - \log(W_{low})}{\log(W_{high}) - \log(W_{low})} (b_{high} - 0.5) + 0.5$
uggressive		e.g. 70 (10Gbps, 100ms)	e.g. 0.1 (10Gbps, 100ms)
	Scalable TCP (STCP)	0.01 (per every ACK)	0.875
	BIC-TCP	{ additive increase (fast) { binary search (slow) max probing (fast)	0.875
	CUBIC-TCP	$w = 0.4(t - \sqrt[3]{2W_{\text{max}}})^3 + W_{\text{max}}$	0.8
adaptive	H-TCP	$\alpha \leftarrow 2(1-\beta)\{1+10.5 \cdot (t-TH)\}$	$\beta \leftarrow \begin{cases} 0.5 & for \left \frac{B(k+1) - B(k)}{B(k)} \right > 2\\ \frac{RTT_{\min}}{RTT_{\max}} & otherwise \end{cases}$
	TCP-Westwood (TCPW)	1	$\begin{cases} RE * RTT_{\min} / PS & (not \ congested) \\ BE * RTT_{\min} / PS & (congested) \end{cases}$

Delay-based TCPs

	a	b
Variants	Update	Decrease
TCP-Vegas	$w \leftarrow \begin{cases} w+1 & (no \ congestion) \\ w & (stable) \\ w-1 & (early \ congestion) \end{cases}$	0.75
FAST-TCP	$w \leftarrow \min\left\{2w, (1-\gamma)w + \gamma\left(\frac{RTT_{\min}}{RTT}w + \alpha\right)\right\}$	0.5 (?)

Hybrid TCP

• RTT increase: loss mode \Rightarrow improvement of friendliness

- no RTT increase: delay mode \Rightarrow improvement of efficiency

Hybrid TCPs

		a	b
	Variants	Increase	Decrease
simple -	Gentle HS-TCP	HS-TCP / Reno	HS-TCP
	TCP-Africa	HS-TCP / Reno	HS-TCP
ſ	Compound TCP (CTCP)	$0.125 \cdot cwnd^{0.75}$ / Reno	0.5
adaptive-	Adaptive Reno (ARENO)	B/10Mbps / Reno	$\begin{cases} 1 & (non \ congestion \ loss) \\ 0.5 & (congestion \ loss) \end{cases}$
	YeAH-TCP	STCP / Reno	$\max\left(\frac{RTT_{\min}}{RTT}, 0.5\right)$
	TCP-Fusion	$\frac{B*D_{\min}}{PS}$ / Reno	$\max\left(\frac{RTT_{\min}}{RTT}, 0.5\right)$

CUBIC-TCP (Linux default)

BIC-TCP (1)

Binary Increase Congestion Control

L.Xu et al: "Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks," IEEE INFOCOM 2004.

BIC-TCP(2)

L.Xu et al: "Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks," IEEE INFOCOM 2004.

BIC-TCP(3)

L.Xu et al: "Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks," IEEE INFOCOM 2004.

CUBIC-TCP(1)

Cubic approximation of BIC-TCP

S.Ha et al: "CUBIC: A New TCP Friendly HighSpeed TCP Variant", ACM SIGOPS Review, 2008.

CUBIC-TCP(2)

S.Ha et al: "CUBIC: A New TCP Friendly HighSpeed TCP Variant", ACM SIGOPS Review, 2008.

CUBIC-TCP(3)

CUBIC's cwnd behavior

S.Ha et al: "CUBIC: A New TCP Friendly HighSpeed TCP Variant", ACM SIGOPS Review, 2008.

CUBIC-TCP (4)

- Advantages
 - stability
 - "intra-protocol fairness" among multiple CUBIC flows
- Disadvantages
 - heavy buffer occupancy and delay increase (\$\emplosed\$)
 - "inter-protocol unfairness" against other TCP flows
 - "Linux beats Windows!" (vs. Compound TCP)

K.Munir et al: "Linux beats Windows! or the Worrying Evolution of TCP...", PFLDNet 2007.

Hybrid TCPs

Hybrid TCP (1)

adaptive switching of two modes (loss & delay):

 constant rate until RTT increases (delay mode) : "efficiency" and "low delay"

2 performs as Reno when RTT increases (loss mode) : "friendliness"

Hybrid TCP (2)

adaptive switching of two modes (loss & delay):

- 1) fast cwnd increase (delay ... "efficiency")
- 2 mild cwnd decrease (delay ... congestion avoidance)
- ③ performs as Reno when RTT increases (loss ... "friendliness")

Min-Max Fair (ideal case)

 Min-Max-Fair: allocate "maximum bandwidth" to a user who has "minimum bandwidth"

D.Bertsekas and R.Gallager: "Data Networks," Prentice Hall.

TCP's objective

Ideal:

bandwidth

TCP Reno

TCP behavior model (1)

- model definition
 - Loss-mode (TCP-Reno):
 - cwnd += 1 (per "RTT round")
 - cwnd *= 1/2 (when a packet loss is detected)
 - Delay-mode :
 - fill a "pipe" (fully utilize a link) without causing RTT increase
 - Hybrid :
 - works in delay mode when RTT is not increased
 - works in loss mode when RTT is increases (i.e. when packets are buffered)
 - mode selection: cwnd = max(cwnd_{loss}, cwnd_{delay})

TCP behavior model (2)

- parameter definition
 - w: cwnd when a packet loss is detected
 - W: cwnd which just fills a pipe ~ BDP
 - p: packet loss rate
- assumption
 - packet loss due to buffer overflow is equivalent to packet loss due to random error

$$p = \frac{8}{3w^2}$$
 (in case of TCP-Reno)

TCP behavior model (3)

• TCP friendly model

w: cwnd when a packet loss is detected p: packet loss rate RTT: round trip time

R: TCP equivalent rate

of transmitted packets until a packet loss is detected

= area of a trapezoid

$$\frac{1}{2} \cdot \left(\frac{w}{2} + w\right) \cdot \frac{w}{2} = \frac{3w^2}{8}$$

TCP behavior model (4)

single flow

TCP behavior model (5)

• cwnd & RTT behaviors of ideal models (single flow case)

TCP behavior model (6)

formulation

ТСР	CA round	(i) $W < w/2$	(ii) $w/2 \le W \le w$	(iii) $w \leq W$
Loss	transmitted	$\frac{3}{2}w^2$	$\frac{3}{2}w^2$	$\frac{3}{2}w^2$
	packets	8	8	8
	elapsed time	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{8}(3w^2 - 4wW) \cdot \frac{PS}{B}$	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{2}(w - W)^2 \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min}$
Delay	transmitted	1 <i>W</i>	1 <i>W</i>	1 W
	packets	$\frac{1}{2}$ with	$\frac{1}{2}$ with	$\frac{1}{2}$ w w
	elapsed time	$\frac{1}{2} w \cdot RTT_{\min}$	$\frac{1}{2} w \cdot RTT_{\min}$	$\frac{1}{2} w \cdot RTT_{\min}$
Hybrid	transmitted	3_{w^2}	$\frac{1}{1}$ $\frac{1}$	1
	packets	8 ^w	$\frac{1}{2}$ w w + $\frac{1}{2}$ (w - w)	$\frac{1}{2}$
	elapsed time	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{8}(3w^2 - 4wW) \cdot \frac{PS}{B}$	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{2}(w - W)^2 \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min}$

PS: Packet size, B: Link bandwidth

TCP behavior model (7)

abstraction of actual hybrids

Hybrids	Window increase	Window decrease
Compound TCP	0.125*cwnd ^{0.75}	1/2
ARENO	B/10Mbps	1/2~1
YeAH-TCP	Scalable TCP (1.01)	1/2, RTT _{min} /RTT, 7/8
TCP-Fusion	B*D _{min} /(N*PS)	RTT _{min} /RTT

 D_{min} : timer resolution, N: # of flows

TCP behavior model (8)

evaluation by models and simulations

buffer size = BDP (constant) Packet loss rate : variable

when PLR is large (w/2<W), throughputs of delay & hybrid are much larger than that of loss-mode (i.e. <u>efficiency</u>)

degradation of Compound & YeAH is due to fixed window decrease

TCP behavior model (9)

two flows (competing)

TCP behavior model (10)

large buffer, small PLR

small buffer, medium PLR

large PLR, always vacant

TCP behavior model (11)

formulation

ТСР	CA round	(i) $W < w$	(ii) $w \leq W < 2w$	(iii) $2w \leq W$
Loss	transmitted	3_{w^2}	3_{w^2}	3_{11}^{2}
	packets	8 ^w	8 ^w	8
Hybrid	transmitted	3_{111}^{2}	$3_{w^2+1}(W-w)^2$	$\frac{1}{1}$ w. $W = \frac{3}{2}$ w ²
	packets	8 ^w	$\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}$	$\frac{1}{2}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$
(common)	elapsed time	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{4}w(3w - 2W) \cdot \frac{PS}{B}$	$\frac{1}{2}w \cdot RTT_{\min} + \frac{1}{4}(2w - W)^2 \cdot \frac{PS}{B}$	$\frac{1}{2} w \cdot RTT_{\min}$

PS: Packet size, B: Link bandwidth

TCP behavior model (12)

evaluation by models and simulations

throughput

buffer size = BDP (constant) Packet loss rate : variable

when PLR is large (w<W), throughputs of delay & hybrid are much larger than that of loss-mode (efficiency)

when PLR is low (w>W), hybrid behaves similar to loss-mode (<u>friendliness</u>)

TCP behavior model (13)

- Advantages of Hybrid TCP
 - when vacant capacity exists (or PLR is large), throughput efficiency is greatly improved (advantage of delay-mode)
 - when no vacant capacity exists (or buffer size is large), friendliness to legacy TCP (i.e. Reno) is achieved (advantage of loss-mode)
- Disadvantages of Hybrid TCP
 - when buffer size is large, delay-mode is never activated ...

Summary of Hybrid TCP

- "Efficiency", "Friendliness" and "Low delay"
 - can be applied to real-time streaming and large file download
 - might be effective in wireless networks
 - friendliness to CUBIC-TCP or Compound-TCP
 - CUBIC-TCP: Linux default
 - Compound-TCP: Windows
 - other metrics
 - RTT fairness, mice/elephant (short-lived or long-lived), convergence speed, etc...
 - efficiency is brought by delay-mode

Summary

Summary of TCP versions

- CUBIC-TCP provides "efficiency", but tends to increase latency because router buffers are filled up
- Compound-TCP provides "low delay" thanks to its delay mode, but suffers from unfriendliness against CUBIC-TCP
- Some community discusses redesign of TCP